
Use of interaction networks
in teaching Minix

Paul Ashton, Carl Cerecke,
Craig McGeachie, Stuart Yeates
Department of Computer Science

University of Canterbury

TR-COSC 08/95, Sep 1995

The contents of this work re
ect the views of the authors who are responsible for the facts and

accuracy of the data presented. Responsibility for the application of the material to speci�c cases,

however, lies with any user of the report and no responsibility in such cases will be attributed to the

author or to the University of Canterbury.



Use of Interaction Networks in teaching Minix

Paul Ashton� Carl Cerecke Craig McGeachie
Stuart Yeates

Department of Computer Science
University of Canterbury

TR COSC 08/95, September 1995

1 Introduction

Minix is a modular operating system designed for use in teaching of operating systems [3, 4]. In
Minix, the operating system is structured as multiple independent processes. These processes
communicate with each other, and with user mode processes, via message passing. While
the modular structure of Minix simpli�es the individual components, the message passing
patterns that occur at run-time can be complex.

The interaction network has been proposed as a way of representing all processing (process
execution and message passing) that is the direct result of a single user input [2]. An inter-
action network is an acyclic digraph. Each vertex in the graph represents an event and each
edge represents a period of thread execution, or message progression, between two events.

Message patterns are shown very well in displays of interaction networks. In this paper,
we use displays of interaction networks to illustrate some of the complex message patterns
that occur in Minix. The interaction networks were all recorded for SunOS Minix, a version
of Minix that has been ported to run as a SunOS process [1].

The interaction networks selected show the message passing that occurs in the following
situations:

� Input of character that is part of a command line.

� Process creation and termination.

� Execution of a new process image.

� Two user processes communicating through a pipe.

We show the value of the interaction network as a tool for understanding distributed pro-
cessing by using it to provide insights into the messages exchanged in a number of situations
that frequently arise in Minix.

�e-mail: paul@cosc.canterbury.ac.nz

1



TTY FS 0/3
(tcsh)a

b
c

d

e

fg

h

Figure 1: Interaction network showing reaction to input of a single character that is part of
a shell command line

2 Case study 1: input of a single character

The interaction network in Figure 1 shows the processing that occurs as the result of input
of a single character that is part of a shell command line. The shell in use is the tcsh, a shell
that reads command lines character-by-character to allow for command line editing. The
character whose input triggered the interaction network did not terminate the command line,
so all that occurred was that the tcsh echoed the character and added it to a bu�er.

Before discussing this example further, some general information on interaction network
displays may be useful. The vertices (each representing an event) are arranged in columns,
with one column for each process that performed processing in response to the user input.
Time increases as you go down the network, with the Y-coordinate of each vertex in direct
proportion to the time at which the event represented by the vertex occurred. The elapsed
time between the initial (top-most) and �nal (bottom-most) vertices in Figure 1 is 0.123
seconds. All of the vertical edges represent activities carried out by processes, and (in this
�gure anyway) each non-vertical edge represents a message. The length of each edge in the
Y direction shows the duration of the activity that it represents.

2.1 Case study 1: step-by-step explanation

1. Vertex a represents the moment at which the terminal task was noti�ed that a character
had been typed. This causes the terminal task to copy the character into a bu�er in
the address space of the tcsh process.

2. The terminal task sends a REVIVE message (b) to the �le system to tell it that a

2



process that was suspended waiting for terminal input can resume execution.

3. The �le server sends message c, which is a reply to an earlier READ request by the
tcsh shell. On receiving message c, the shell transfers the character to the command
line it is building up.

4. The shell sends a WRITE message (d) to the �le system so as to echo the character just
entered.

5. To perform the echo, the �le system sends a TTY WRITE message to the terminal
task, which then replies that the character has been echoed successfully (e). The �le
system then relays this fact to the shell in a reply message.

6. As the shell has not yet got a complete command line, it sends a READ message (f) to
the �le system asking it to read further terminal input.

7. The �le system sends a TTY READ message to the terminal task asking for terminal
input.

8. There is no terminal input, so the terminal task replies to that e�ect with message h.

2.2 Case study 1: discussion

1. Minix uses a rendezvous message passing protocol. In rendezvous, a message is copied
from sender to receiver only when both are ready to communicate. The process that
becomes ready �rst must block, and await the other. Several of these block events can
be observed in Figure 1. In each case, a process sends a request message and then blocks
waiting for a reply. For example, after the shell sends message d it immediately tries to
receive a message from the �le system, and blocks because the �le system is not trying
to send a message to the shell. In this case the receiver is blocking.

One consequence of the use of rendezvous is that the message passing activities shown
in Figure 1 have very short durations (typically a little over 3 milliseconds). This is
because all that is involved is copying the message from the address space of one Minix
process to the address space of another. If a message passing protocol were used that
allowed messages to be bu�ered within the kernel, then some messages would exist for
much longer periods.

2. The processing towards the bottom of the interaction network is interesting. When
the terminal task discovers it has no characters to return to the �le system, it replies
anyway. This allows the �le system to continue processing requests. If the terminal
task did not reply until it had input, then the �le system (because it is single threaded)
would be suspended for a potentially very long period. If the �le system is suspended
for a considerable period, then very quickly all active processes would �nd themselves
waiting to rendezvous with the �le server.

Notice that the �le server does not reply to the shell. This keeps the shell suspended
until there is further input. In Minix, the only process queues are the ready-list and
those associated with message passing.

When subsequent input does occur, the terminal task sends a REVIVE message to the
�le system that allows it (�nally) to reply to the earlier READ. So message c is a reply

3



Parent

Child

SYS
FS

MM
a

b

c

d
e

Figure 2: Interaction network fragment showing message that results from a fork system call

to the message f that was sent in the previous interaction network recorded for this
user. It should be clear how multiple instances of this interaction network would occur
one after the other as the characters of a command line were entered, with the message
passing towards the end of one interaction network setting the scene for the message
passing that occurs at the start of the next.

3. Nine messages are passed just to put one character into a bu�er and echo it. In fact
a tenth message is involved at the start of the interaction. It is sent by an interrupt
handler to the terminal task to inform the terminal task that input has arrived. This
message does not appear in Figure 1 because in the current version of the monitor the
probe that detects terminal input is in the terminal task.

3 Case study 2: creation of a process

Process creation requires cooperation between all of the major operating system components.
The interaction network fragment in Figure 2 shows the message passing that results from a
fork system call.

3.1 Case study 2: step-by-step explanation

1. In this part of the interaction network, the �rst message shown is a FORK message sent
by the parent process to the memory manager (a) asking that it create a new process.
The memory manager allocates memory for the new process (amongst other things).

2. The memorymanager informs the system task of the new process by sending a SYS FORK
message (b).

3. The memory manager informs the �le system of the new process by sending a FORK
message to it (c).

4. Process creation is now complete. The memory manager sends a reply message to the
child (d) with a return value of 0, and a reply message to the parent (e) with a return
value of the process id of the child process.

4



3.2 Case study 2: discussion

1. In Minix, the process table is split vertically in three. One part is maintained by the
kernel (which consists of all interrupt handlers and device driver processes), a second by
the memory manager and a third by the �le system. The memory manager coordinates
the creation of a new process, and creates a new entry in its own process table. It must
send messages to the system task and the �le system so that appropriate entries are
created in the process tables of the kernel and the �le system.

2. The child process is shown as being created by the system task. The edge from the
creation event to the reception of message d represents a period during which the process
was blocked waiting to receive a reply from the memory manager (which is precisely
what the parent process was doing at the time the child was created).

3. The message passing in this case is rather unusual. A single request to the memory
results in two replies|one to the parent, and one to the child.

4. The fork system call has given rise to 7 messages.

4 Case study 3: loading a new program image

The exec system call, which causes a process to execute a newly loaded program, gives rise to
a considerable amount of message passing. Much of the interaction network fragment shown
in Figure 3 is caused by one exec system call, and this will be discussed �rst. Following this
will be discussion of two related system calls|wait and exit.

4.1 Case study 3: exec step-by-step explanation

1. The �rst message in Figure 3 sent by the user process running the program exec.c is an
EXEC message (a) sent to the memory manager requesting that a new program image
be loaded for that user process.

2. The memory manager needs the pathname of the executable program, so it asks the
system task (b) to copy the pathname from the address space of exec.c to the address
space of the memory manager.

3. The memory manager sends a CHDIR message to the �le system to get it to change
the memory manager's current working directory to that of the exec.c process.

4. The executable �le is opened (d) by sending an OPEN message to the �le system.

5. An FSTAT is message is sent to the �le system to get information on the newly-opened
�le (e). The �le type and protection mode are needed to make security checks, check
that the �le is executable, and to see whether the executable �le is set-uid and/or
set-gid.

6. The memory manager changes back to its own current working directory (f).

7. The header (containing the sizes of the various sections) of the executable �le is read
into memory (g). The DISK task is sent a SCATTERED IO message to have it transfer

5



Shell MM FS

SYS DISK exec.c

a
b

c
d

e

f

g

h

i
j

k

l

m
n

o

p
q
r

s
t u

vw

x
yz

Figure 3: Interaction network fragment showing message passing that results from exec and
exit system calls

6



a 1024 byte block into the �le system's cache area, and the system task copies the header
portion of that block to the memory manager.

8. The stack of the process that invoked exec is copied into the memory manager (h).
The copied stack contains the command line arguments and environment that are to be
supplied to the program being loaded.

9. The memory manager uses information in the header to compute the amount of memory
needed by the new executable. The appropriate amount of memory is allocated, and
the old memory area is released. The kernel is informed of the address space changes
via a SYS FRESH message to the system task (i).

10. A newly constructed stack, containing the command line arguments and the environ-
ment, is copied into the new address space (j).

11. A single READ request is sent to the �le server so that the text segment is transferred
into the new address space. The �le system reads in the text segment in 1Kb blocks
(k). The �rst block is already cached by the �le server because it contains the header.
The second block is still on disk.

12. The data segment is transferred into the new address space (l) in 1Kb blocks.

13. The memory manager sends an LSEEK message to step over the symbol table in the
executable (m).

14. Text and data relocation must now occur, because in SunOS Minix all processes run
in the data segment of a SunOS process, and the starting address of a loaded program
is not determined until run-time. First the text segment is relocated. A SYS MPROT
message (n) is sent to the system task to make the text segment accessible to the memory
manager. The SYS MPROT message was added to SunOS Minix as part of a memory
protection subsystem.

15. The text relocation information is read into the memory manager from the executable
�le (o).

16. The relocations are performed, then another SYS MPROT message is sent (p) to disable
access to the text segment.

17. Data relocations now occur. In fact there are none, but the messages to enable and
disable access to the data segment (q and r) are still sent (room for some optimisation
here).

18. The memory manager has �nished with the executable �le, so it is closed (s).

19. The new executable has been loaded. The memory manager sends a SYS EXECmessage
(t) to the system task. This causes the system task to assign values to some of the saved
registers of the process that has just loaded the new program. The main registers set are
the program counter and the stack pointer. The system task also marks the process as
runnable, and records a new \name" for the process for use in kernel debugging reports.
The new name event is shown as an event in exec.c (u).

7



4.2 Case study 3: exec discussion

1. The memory manager and the �le system cannot directly access the address spaces of
any other process. They need to send SYS COPY messages to the system task to ask it
to do the copying on their behalf. This is apparent from the memory manager having to
get the system task to copy the pathname of the invoked program and to copy various
program stacks, and the �le system having to get the system task to copy �le data to
and from other address spaces.

Use of SYS COPY in performing relocations would have been very clumsy, so SYS MPROT
messages are used to make the segment being relocated writable for the period during
which relocation is performed.

2. The memory manager (temporarily) changes its current working directory to that of
the process that sent the EXEC message so that if the pathname of the �le to execute
is relative to the current working directory, then the pathname is interpreted relative
to the correct directory.

3. During the processing of the CHDIR message by the �le system, you might have ex-
pected to see use of the system task to copy a directory name. The �le system handles
CHDIR requests from the memory manager in a special way|it simply copies a pointer
to a structure that contains information about a directory. In the �rst call (c) the
pointer is the current directory pointer of the speci�ed process, and in the second (f)
it is the �le system's root directory pointer.

4. During the processing of the OPEN by the memory manager (d), you might have ex-
pected to see use of the system task to copy the name of the �le to open. The system
task is not needed in this case because the �le name is short, and for OPEN messages
short �le names are stored directly in the OPEN message.

5. The three disk accesses have short elapsed times (of the order of 4 milliseconds). In
SunOS Minix, disk reads are simulated by issuing SunOS read system calls. In all of
these cases it is highly likely that SunOS had the information already cached, so no
access to a physical disk was required.

6. When the memory manager has �nished performing the exec call, it does not reply (if
you look closely, you can see that the last event in the memory manager that is part of
the exec handling is the receipt of message t). This is because the user process that
originally invoked exec re-starts execution at the beginning of the new program, and is
not expecting a reply to an EXEC message sent by an earlier program.

7. A total of 57 messages were sent during processing of the EXEC system call. This
number is not a constant|it depends on the size of the executable �le, and the extent
to which the executable is cached by the �le system. Also, the fact that relocation is
required is a consequence of use of a single address space (as is also the case in the
versions of Minix for 68000 machines), and the SYS MPROT messages are a peculiarity
of SunOS Minix.

8



Shell MM

a

b

c

Figure 4: Interaction network fragment showing the start of a wait

4.3 Case study 3: exit step-by-step explanation

Also illustrated in Figure 3 is the message passing that results from the exit system call.
The program whose loading is shown in the upper part of the �gure simply exits immediately.

1. To terminate itself, the exec.c process sends an EXIT message to the memory manager
(v).

2. The shell has been waiting for one of its child processes (such as the one that it created
to run exec.c) to terminate. As one of the shell's child processes has just exited, a
reply message (w) to a previous WAIT is sent.

3. The system task and �le system are informed of the termination of the process so that
they can update their process tables accordingly (x and y). Note the symmetry with
the message passing associated with the creation of a process.

4.4 Case study 3: exit discussion

1. Again (as with EXEC), no reply message is sent to the EXIT message (a gap can be
seen between the memory manager receiving reply y from the system task and receiving
message z from the shell). In this case there is no process to reply to.

2. The beginning of the shell's wait occurs earlier in the interaction network, and is shown
in Figure 4. The memory manager receives the WAIT message (c), but �nds that the
shell must be suspended until one of its child processes exits (messages a and b are
SIGNAL messages, and are the last system calls made by the shell before it begins
waiting for a child to exit). Once again we see a process being suspended because a
reply message is withheld.

3. Once awakened, the shell tidies up so that it can prompt for the next command. The
�rst thing it does is to send a SIGNAL message to the memory manager (z).

9



a

b

grep

SYS

FS

TTY

ls

c

d

e
f

g

h

i

Figure 5: Interaction network fragment showing communication via a pipe

5 Case study 4: communication through a pipe

The only way for two Minix user processes to exchange messages is through a pipe. Figure 5
contains an interaction network fragment that shows one bu�er progressing through a pipe.
The interaction network resulted from the entry of a newline at the end of the command line
ls -la /usr/bin j grep -

5.1 Case study 4: step-by-step explanation

1. At the top of the �gure we can see the ls process sending its last message (a, a CLOSE
message) before it writes to the pipe.

2. ls writes to the pipe by sending a WRITE message to the �le system (b).

3. The �le system gets the system task to copy data from the ls process into a bu�er set
aside for the pipe (c).

4. The write is complete, so the �lesystem replies to ls (d).

5. Having replied to the WRITE, the �le system checks to see whether there are any
processes suspended, reading from the pipe. It �nds there is one, so the �le system gets
the system task to copy the data from the pipe to a bu�er in the grep process (e).

6. The �le system then sends to grep a reply to an earlier READ message (f).

7. ls starts producing its next output by sending an OPEN message to the �le system (g).

8. On receiving lines of input, grep determines that (at least some of) the lines match
the pattern it is searching for, and it writes the matching lines (h). Writing the lines

10



involves sending a WRITE message to the �le system. The �le system determines
that the speci�ed �le descriptor is associated with a terminal, so sends a TTY WRITE
message to the terminal task.

9. grep sends a READ message to the �le system (i) to request further input from the
pipe. The pipe is empty, so the �le system goes on to receive the next message without
replying to the READ, thereby leaving grep suspended.

5.2 Case study 4: discussion

1. Again note that, as with the message passing in Figure 1, the message passing pattern
shown in Figure 5 will be repeated several times as data 
ows through the pipe. Later
in the interaction network that is partly shown in Figure 5 ls writes to the pipe, causing
an f-like message to be sent to grep as a reply to message i.

2. Sending one message through the pipe has involved eight Minix messages.

3. Once again a process is blocked by simply not sending a reply to it.

6 Conclusions

The interaction networks and network fragments that appear as �gures in this document
have shown several complex message passing patterns that arise in Minix. The �gures give
considerable insight into the internal operation of Minix, and show that displays of interaction
networks are useful teaching tools.

7 Acknowledgements

This paper resulted from work done as part of an assignment set by the �rst author for a
fourth year honours class. The other authors were the members of that class whose assign-
ments contained much of the raw material for this paper. Other members in the class (Mark
Alexander, Andrew Bryant, Mark Dunlop, Simon Knudsen, Justin Macfarlane and Chris
Tsui) also did good work in the assignment, many producing case studies similar to those
included here.

References

[1] Paul Ashton, Daniel Ayers, and Peter Smith. SunOS Minix: a tool for use in operat-
ing system laboratories. In ACSC-17: Proceedings of the Seventeenth Annual Computer

Science Conference, pages 259{269, Christchurh, New Zealand, January 1994.

[2] Paul Ashton and John Penny. A tool for visualising the execution of interactions on
a loosely-coupled distributed system. Software|Practice and Experience, (accepted for
publication).

[3] Andrew S. Tanenbaum. Operating Systems: Design and Implementation. Prentice-Hall,
Englewood Cli�s, NJ, 1987.

11



[4] Andrew S. Tanenbaum. A UNIX clone with source code for operating systems courses.
Operating Systems Review, 21(1):20{29, January 1987.

12


