
Using Interaction Networks for
Visualisation of Message Passing

Paul Ashton
Department of Computer Science

University of Canterbury

TR-COSC 04/96, Aug 1996

The contents of this work reflect the views of the authors who are responsible for the facts and accuracy of the data presented.
Responsibility for the application of the material to specific cases, however, lies with any user of the report and no responsibility in such

cases will be attributed to the author or to the University of Canterbury.



Using Interaction Networks for Visualisation of Message Passing

Paul Ashton
Department of Computer Science

University of Canterbury
Christchurch, New Zealand

paul@cosc.canterbury.ac.nz

TR COSC 04/96, August 1996

Abstract

Understanding software structured as separate programs
that communicate via message passing requires under-
standing how the various programs interact with each other,
as well as understanding the individual programs in iso-
lation. An interaction network display shows in a visual
way message passing within and between programs. We
have implemented an interaction network monitor for the
MINIX operating system, for use in showing students how
the system programs and processes of MINIX interact to
provide operating system services. We give three exam-
ples to demonstrate the insights into message-based sys-
tems that can be gained from studying interaction network
displays.

Introduction

Many pieces of complex software are structured as pro-
cesses running different programs that communicate via
message passing. Most recently-developed operating sys-
tems have this structure, particularly distributed operat-
ing systems. An advantage of structuring software in this
way is that the individual programs are simpler and eas-
ier to understand than a single monolithic program that
provides the same functionality. However, understanding
such a piece of software requires considerable knowledge
about the message passing patterns between component
programs, in addition to knowledge about the internals of
each program. Few tools exist that allow students to vi-
sualise message passing patterns, an activity that will help
them understand how the various programs cooperate in
solving problems.

The interaction network was developed as a way of rep-
resenting interactive processing carried out in a distributed
system. A strength of the interaction network is that it cap-
tures all server processing required to carry out a user re-
quest. Although interaction networks were developed orig-
inally to support performance measurement, experience
with interaction network monitors developed for SunOS
[2] and Amoeba [1] showed that displays of interaction
networks gave considerable insights into the behaviour of
message passing systems.

An interaction network monitor has been developed for

MINIX, an operating system implemented as three sepa-
rate programs that communicate via message passing. The
monitor was developed so that students could be presented
with interaction networks so as to help them understand
how the various MINIX programs and processes collec-
tively provide operating system services.

In this paper we present examples of interaction net-
works and use them to illustrate how MINIX carries out
common operating system tasks. These example show that
displays of interaction networks can contribute to increased
understanding of message passing systems and their dy-
namic behaviour. Before presenting the examples, we give
brief introductions to MINIX and to interaction networks.

MINIX

MINIX is a complete operating system developed for use
in operating systems teaching [4, 5]. While the user and
application-programmer interfaces are heavily based on
Unix, the internal structure of MINIX is quite different to
the monolithic structure of traditional Unix kernels.

In MINIX, the operating system consists of three pro-
grams and around ten processes. The kernel program
contains code for handling traps and interrupts (which in-
cludes support for the three message passing system calls)
and several processes: the device drivers, and the system
task which acts as an agent for the file system and memory
manager. The file system (fs) and memory manager (mm)
run as separate processes in their own address spaces.

Nearly all communication between the various operating
system processes, and between users processes and system
processes, is through messages. There is a library function
for each of the standard Unix system calls (fork, exec,
open and so on), which sends a request message to either
the memory manager (for fork, exec and so on) or the
file system (for open and so on), then waits for a reply
message.

All operating system processes are structured as servers.
That is, they sit in a loop in which they receive a message,
process the message then (usually) send one reply. This re-
quest/reply protocol is common in MINIX, but not univer-
sal. Sometimes there is no reply, or the reply is triggered by
a later event. Sometimes there are two replies. Most of the
complex message passing patterns in MINIX (including all



of the examples we present) involve some message passing
that does not follow the simple request/reply protocol.

To understand MINIX, it is essential to appreciate how
the system processes interact to provide system services.

Interaction networks

An interaction network is an acyclic digraph that represents
the system reaction to a single user action (such as a single
keystroke or mouse event). System reactions are carried
out by communicating processes, and consist of periods of
process execution, and messages sent between processes.
A system reaction is very different to the execution of a
single program because the system reaction involves com-
plete and partial execution of many programs. The fact that
interaction networks contain records of all processing, in-
cluding server processing, that occurs in response to a user
input means that they record the message passing between
operating system components that occurs during process-
ing of interactive requests.

We have implemented an interaction network monitor
for Solaris MINIX, a version of MINIX that runs hosted
under Solaris 2.51. A major motivation for developing the
monitor was to give students the ability to observe message
passing patterns that occur in MINIX. The events recorded
by the monitor relate to: reception of keyboard input, send-
ing and receiving of messages, and creation and termina-
tion of processes.

One way of analysing an interaction network is to
browse a display of it. Figure 1 shows an interaction net-
work as displayed by the browser for MINIX interaction
networks. Each vertex represents an event in a process or
message, and each edge represents a period of process ex-
ecution (or time spent blocked), or the transmission of a
message. The vertices are arranged in columns, with one
column for each process that performed processing in re-
sponse to the user input. Figure 1 shows three processes
performing processing in response to a single keystroke.

In an interaction network display, time increases as you
go down the network, with the Y-coordinate of each vertex
in direct proportion to the time at which the event repre-
sented by the vertex occurred. The elapsed time between
the events represented by the initial (top-most) and final
(bottom-most) vertices in Figure 1 is 2.8ms. Each verti-
cal edge represents an activity carried out by a process,
and each non-vertical edge represents a message. Each
light edge represents a period during which a process was
blocked waiting for a message. Each dark edge represents
a period during which a process was runnable (though not
necessarily running), or a message being sent. The length
of each edge in the Y direction shows the duration of the ac-
tivity that it represents. The interaction network in Figure
1 is explained in the next section.

The MINIX interaction network browser supports pan-
ning and zooming, can provide extra details on a selected
event vertex (such as the type of message being sent or

1For details on downloading the current Solaris MINIX release, see
http://www.cosc.canterbury.ac.nz/˜paul/smx.html.
The interaction network monitor is part of the Solaris Minix release.

TTY FS 0/9
(tcsh)a

b

c

Figure 1: Interaction network showing reaction to input of
a single character that is part of a shell command line.

received), and provides some ability to tailor the way in
which the network is displayed.

The interaction network displays presented in the next
three sections show how displays of interaction networks
provide considerable insights into the internal operation of
MINIX. The information needed to write the commentaries
on each interaction network was gained by looking at inter-
action network displays, determining message types using
the browser and, where necessary, reading relevant source
code fragments.

Example 1: Input of a Single Character

The interaction network in Figure 1 shows the processing
that occurs as the result of input of a single character that is
part of a shell command line. The shell in use,tcsh, reads
command lines character-by-character to allow for com-
mand line editing. The character whose input triggered the
interaction network did not terminate the command line, so
all that occurred was that tcsh echoed the character and
added it to a buffer, before asking for the next character.

Vertex a in Figure 1 represents the moment at which the
terminal task (one of the processes that run in the kernel)
was notified that a character had been typed. The termi-
nal task sends a REVIVE message to the file system, caus-
ing it to reply to an earlier READ message from tcsh.
tcsh sends a WRITE message (b) to the file system so as
to echo the character just entered. The file system sends
a DEV WRITE message to the terminal task, which then
replies that the character has been echoed successfully. The
file system then relays this fact to tcsh in a reply message.
tcsh has not got a complete command line, so it sends

a READ message (c), to the file system which sends a
DEV READ message to the terminal task. There is no ter-
minal input, so the terminal task replies to that effect.

As noted earlier, message exchanges involving one re-
quest message being sent to a server, and the server send-
ing back one reply are common in MINIX. Three such re-
quest/reply message pairs are evident in Figure 1.

Notice that when the terminal task discovers it has no
characters to return to the file system, it replies anyway.
This allows the file system to continue processing requests.
If the terminal task did not reply until it had input, then



the file system could be suspended for a long period, dur-
ing which all active processes would soon find themselves
waiting to send a message to the file system.

The file system does not in turn reply to tcsh, which
keeps tcsh suspended until there is further input. This
is the standard MINIX method for suspending a user
process—a reply is withheld until the request can be com-
pleted. In the meantime, the operating system process is
free to handle requests from other processes.

When subsequent input does occur, the terminal task
sends a REVIVE message to the file system (which is the
second reply to the file system’s DEV READ request) that
allows the file system to (finally) reply to the earlier READ.

The message received by tcsh just before vertex b is a
reply to the message sent at vertexc in the previous interac-
tion network recorded for this user. It should be clear how
multiple instances of this interaction network would occur
one after the other as the characters of a command line were
entered, with the message passing towards the end of one
interaction network setting the scene for the message pass-
ing that occurs at the start of the next.

Finally, in MINIX messages are not buffered by the oper-
ating system. A message is copied from sender to receiver
only when both are ready to communicate. One conse-
quence of this is that the message passing activities shown
in Figure 1 are very short (9 to 10 microseconds), as all that
is involved is copying the message.

Example 2: Process Creation and Termination

The message passing that arises from a request to create a
new process is shown in the interaction network fragment
in Figure 2.

At vertex a, tcsh sends a FORK message to the mem-
ory manager, asking it to create a new (child) process. The
memory manager allocates two new memory areas for the
child, to hold its data and stack segments (the text segment
is shared), then sends two SYS COPY messages to the sys-
tem task in the kernel; the first to copy the data segment,
and the second to copy the stack segment. The memory
manager is an ordinary user process, with no ability to ac-
cess memory outside its own address space, which is why
it must ask the system task to do the copying on its behalf.

The memory manager then sends FORK messages to the
system task and the file system to inform them of the cre-
ation of the new process. In MINIX, the process table is
split between the kernel, the memory manager and the
file system. TheFORKmessages are sent so that the system
task and file system add an entry for the new process to their
respective pieces of the process table. The child process is
shown as being created at vertex b, with the diagonal edge
leaving vertex b representing time during which the child
process is blocked.

The memory manager determines the memory map for
the child process (which records the sizes and virtual and
physical addresses of the text, data and stack segments),
and sends a SYS NEWMAP message to the system task so
that the memory map is recorded in the kernel’s process
table.

a

tcshSYSMM

b

FS

child

c

d

Figure 2: Interaction network showing the message passing
that occurs during process creation.

Process creation is now complete. The semantics of the
UNIX fork operation mean that the child is created in the
same state as the parent. In MINIX, this means that the
child is created waiting for a reply from the memory man-
ager. The memory manager therefore sends two reply mes-
sages: one to the child with a return value of 0, and one to
the parent with a return value of the process id of the child
process. Thirteen messages have been sent to carry out the
FORK request.

When tcsh resumes executing, it sends a TIMES mes-
sage (c) to the file system to determine CPU time used to
date. The file system simply forwards the request to the
system task in the kernel, which is where the account-
ing records are kept. User processes can send messages to
the file system and memory manager only, which is why
tcsh cannot send the TIMES message directly to the sys-
tem task.

Finally in Figure 2, tcsh sends aWAITmessage (which
is received at d) to the memory manager to wait for one of
its child processes to terminate. The memory manager does
not reply immediately, thereby suspendingtcsh. Again, a
user process is blocked because a reply is withheld.

Figure 3 shows a second fragment of the interaction net-
work from which Figure 2 is taken. In it we see the mes-
sage passing that occurs when the process whose creation
is shown in Figure 2 terminates. At vertex a, date (which
is the program now being executed by the child process)
sends an EXIT message to the memory manager. The file
system and system task are informed that date is termi-
nating as, once again, the file system and kernel process



a

date

tcshSYSFSMM

Figure 3: Interaction network showing the message passing
that occurs during process termination.

a

b

c

d

TTY

MM

SYS

FS

fgrep ls

Figure 4: Interaction network showing communication be-
tween two user processes through a pipe.

tables must be updated. We regard the final termination as
being done by the system task. The memory manager then
sends a reply message; not to date (it not longer exists)
but to tcsh. This reply is sent in response to the WAIT
message shown at the bottom of Figure 2, which was sent
209ms earlier.

Example 3: Communication Through a Pipe

The final example shows the message passing that occurs
when two user processes communicate through a tradi-
tional Unix pipe. In the example, the output of ls (list di-
rectory) is being sent to fgrep (extract lines matching a
specified string) through a pipe. The output of fgrep is
going to the terminal.

At vertex a, ls sends a WRITE message to the file sys-
tem to request that data be written to the pipe. Because the
file system is a user process, it must ask the system task
to copy the data into one of the file system’s buffers, after

which the file system replies to ls. The file system then
finds that there is a process waiting to read from the (no
longer empty) pipe, so uses the system task to copy data
to fgrep, then sends a reply to an earlier READ message
from fgrep. This is another example of one request mes-
sage resulting in two replies.

The data read from the pipe is processed by fgrep, and
at vertex b a WRITE message is sent to the file system to
write some output to the terminal. The file system forwards
this request message to the terminal task. Notice that be-
cause the terminal is running within the kernel it can
copy output from fgrep without needing to invoke the
system task.

With the terminal write complete, fgrep sends a READ
message at vertex c to ask the file system for more data
from the pipe. The pipe is currently empty, so the file sys-
tem suspends fgrep by withholding the reply message.
Notice thatfgrepwould have been suspended in the same
way prior to the sequence of events shown in Figure 4. The
pattern of messages from the sending of the WRITE mes-
sage at vertex a, to the reception of the READmessage sent
at vertex c will have occurred repeatedly as data is written
to the pipe by ls and read and processed by fgrep. A to-
tal of eight messages is needed to carry out the transfer of
a single buffer through the pipe.

When ls resumes execution, it sends an EXIT message
to the memory manager at vertex d. The memory manager
then notifies the file system that the ls process is termi-
nating (as described in example 2). Notice that after the
file system replies to the memory manager, it also sends
a message to fgrep. This is because the termination of
ls has removed the last process that can write to the pipe,
so an end of file indication must be returned to the waiting
fgrep process.

Experiences

To date, we have had some experience with teaching stu-
dents about MINIX using interaction networks. In 1995,
students of COSC805 (a post-graduate operating systems
course) were asked to prepare a report that used interaction
network displays to illustrate aspects of the internal oper-
ation of MINIX. Students were given the monitoring soft-
ware, and selected appropriate networks themselves. They
had no difficulty in coming up with many interesting exam-
ples, including ones similar to those presented in this paper.

In 1996, a report based on the 1995 class work was given
to the COSC805 class, and figures from the report were dis-
cussed in lectures. Informal feedback indicated students
thought that message passing patterns were well captured
by the interaction network displays. In reading the report,
they commented that they were constantly switching atten-
tion between the figure and the supporting text, which they
found distracting.

Related work

Our approach is not unique in its use of digraph displays
to show recorded message passing activity. Similar dis-



plays can be found for both parallel and distributed pro-
grams (see, for example, [6, 7]). These other displays are,
however, based on capturing message passing within a sin-
gle parallel or distributed program; the monitors have no
ability to follow execution outside the processes that exe-
cute the program.

Because an interaction network records all processing
that results from a user input, interaction network monitors
are capable of following execution into processes execut-
ing other programs. This makes interaction network moni-
tors very well suited to visualisation of message passing in
systems, such as message-based operating systems, that are
made up of communicating processes executing more than
one program. We are not aware of other monitors that can
do this.

Tanenbaum seems to regard graphical displays of mes-
sage passing patterns as a useful teaching device, as he uses
them to explain MINIX message passing patterns [4]. In
his figures, each process is represented by a single vertex,
with each message shown as an edge. The edges are num-
bered to show the order in which the messages are sent.
The figures presented in [4] rely on the availability of a
MINIX expert to produce them, whereas an interaction net-
work monitor lets students explore any aspect of the sys-
tem that catches their interest. Also, interaction network
displays can capture much more complex message passing
patterns.

Other visualisation methods for operating systems pro-
vide detailed information on a single algorithm, and so
have very different objectives from our own. A typical ex-
ample is Hartley’s use of an algorithm animation system to
illustrate operation of a solution to the dining philosophers
problem [3].

Conclusions

Many complex pieces of software are structured as sepa-
rate programs that communicate by message passing. Stu-
dents seeking to understand such software must learn about
the (often complex) interactions between the various pro-
grams, as well as learning (using traditional tools and tech-
niques) about the internal operation of each program. Mon-
itors that can record and display interaction networks pro-
vide valuable information on interactions between pro-
grams because (unlike program monitors) they are able to
track requests for processing from one program to another.

The examples presented show that interaction networks
are a rich source of information on the behaviour of
message-based systems. The figures in this paper show ex-
amples of several system processes, running in three dis-
joint address spaces, cooperating to carry out requests from
user processes. The figures also show several examples of
unusual message passing patterns, such as a reply being
withheld to suspend a user process, two replies being sent
in response to a single request, and a reply being sent to a
process different from the requesting process.

Displays of MINIX interaction networks show clearly
interactions between processes executing communicating
programs, and provide insight into the overall operation of
such pieces of software. Interaction network monitors are

not MINIX-specific, and can be applied to a wide variety of
message based systems, as shown by previous implemen-
tations for SunOS [2] and Amoeba [1].

Acknowledgements

Thanks to Tim Bell and Michel de Champlain for their
comments on drafts of this paper, and to the COSC805 class
of 1995 for providing initial versions of many of the exam-
ples.

References

[1] ASHTON, P. An interaction network monitor for
Amoeba. Tech. Rep. TR-COSC10/95, University of
Canterbury, Department of Computer Science, Oct.
1995.

[2] ASHTON, P., AND PENNY, J. A tool for visualising
the execution of interactions on a loosely-coupled dis-
tributed system. Software—Practice and Experience
25, 10 (Oct. 1995), 1117–1140.

[3] HARTLEY, S. Animating operating systems algo-
rithms with XTANGO. In Proceedings of the 25th
SIGCSE Technical Symposium (New York, Mar. 1994),
pp. 344–348.

[4] TANENBAUM, A. S. Operating Systems: Design and
Implementation. Prentice-Hall, Englewood Cliffs, NJ,
1987.

[5] TANENBAUM, A. S. A UNIX clone with source code
for operating systems courses. Operating Systems Re-
view 21, 1 (Jan. 1987), 20–29.

[6] TSAI, J. J. P., FANG, K.-Y., CHEN, H.-Y., AND BI,
Y.-D. A noninterference monitoring and replay mech-
anism for real-time software testing and debugging.
IEEE Transactions on Software Engineering 16, 8 (Au-
gust 1990), 897–915.

[7] ZERNIK, D., SNIR, M., AND MALKI, D. Using visu-
alization tools to understand concurrency. IEEE Soft-
ware 9, 3 (May 1992), 87–92.


